
Jointly Distributed Random Variables

P. Sam Johnson

P. Sam Johnson Jointly Distributed Random Variables 1/78



Joint Distribution Functions

Thus far, we have concerned ourselves only with probability distributions for single random
variables. However, we are often interested in probability statements concerning two or more
random variables. In order to deal with such probabilities, we define, for any two random
variables X and Y , the joint cumulative probability distribution function of X and Y by

F (a, b) = P{X ≤ a,Y ≤ b} = P({X ≤ a} ∩ {Y ≤ b}) −∞ < a, b <∞.

The distribution of X can be obtained from the joint distribution of X and Y as follows:

FX (a) = P{X ≤ a}
= P{X ≤ a,Y <∞}

= P

(
lim

b→∞
{X ≤ a,Y ≤ b}

)
= lim

b→∞
P{X ≤ a,Y ≤ b}

= lim
b→∞

F (a, b)

≡ F (a,∞).
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Joint Distribution Functions

Note that, in the preceding set of equalities, we have once again made use of the fact that
probability is a continuous set (that is, event) function. Similarly, the cumulative distribution
function of Y is given by

FY (b) = P{Y ≤ b}
= lim

a→∞
F (a, b)

≡ F (∞, b).

The distribution functions FX and FY are sometimes referred to as the marginal distributions of
X and Y .
All joint probability statements about X and Y can, in theory, be answered in terms of their
joint distribution function. For instance, suppose we wanted to compute the joint probability
that X is greater than a and Y is greater than b. This could be done as follows:

P{X > a,Y > b} = 1− P({X > a,Y > b}c )

= 1− P({X > a}c ∪ {Y > b}c )

= 1− P({X ≤ a} ∪ {Y ≤ b})
= 1− [P{X ≤ a}+ P{Y ≤ b} − P{X ≤ a,Y ≤ b}]
= 1− FX (a)− FY (b) + F (a, b).

(1)
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Joint Distribution Functions

Equation (1) is a special case of the following equation, whose verification is left as an exercise:

P{a1 < X ≤ a2, b1 < Y ≤ b2}
= F (a2, b2) + F (a1, b1)− F (a1, b2)− F (a2, b1)

(2)

whenever a1 < a2, b1 < b2.
In the case when X and Y are both discrete random variables, it is convenient to define the
joint probability mass function of X and Y by

p(x , y) = P{X = x ,Y = y}.

The probability mass function of X can be obtained from p(x , y) by

pX (x) = P{X = x}

=
∑

y :p(x,y)>0

p(x , y).

Similarly,

pY (y) =
∑

x :p(x,y)>0

p(x , y).
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Example

Example 1.
Suppose that 3 balls are randomly selected from an urn containing 3 red, 4 white, and 5 blue
balls. If we let X and Y denote, respectively, the number of red and white balls chosen, then
the joint probability mass function of X and Y , p(i , j) = P{X = i ,Y = j}, is given by

p(0, 0) =

(
5
3

)/(
12
3

)
=

10

220

p(0, 1) =

(
4
1

)(
5
2

)/(
12
3

)
=

40

220

p(0, 2) =

(
4
2

)(
5
1

)/(
12
3

)
=

30

220

p(0, 3) =

(
4
3

)/(
12
3

)
=

4

220

p(1, 0) =

(
3
1

)(
5
2

)/(
12
3

)
=

30

220

p(1, 1) =

(
3
1

)(
4
1

)(
5
1

)/(
12
3

)
=

60

220

p(1, 2) =

(
3
1

)(
4
2

)/(
12
3

)
=

18

220
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Example (Contd...)

p(2, 0) =

(
3
2

)(
5
1

)/(
12
3

)
=

15

220

p(2, 1) =

(
3
2

)(
4
1

)/(
12
3

)
=

12

220

p(3, 0) =

(
3
3

)/(
12
3

)
=

1

220

These probabilities can most easily be expressed in tabular form, as in Table 6.1. The reader
should note that the probability mass function of X is obtained by computing the row sums,
whereas the probability mass function of Y is obtained by computing the column sums. Because
the individual probability mass functions of X and Y thus appear in the margin of such a table,
they are often referred to as the marginal probability mass functions of X and Y , respectively.

i
j

0 1 2 3 Row sum = P{X = i}

0 10
220

40
220

30
220

4
220

84
220

1 30
220

60
220

18
220

0 108
220

2 15
220

12
220

0 0 27
220

3 1
220

0 0 0 1
220

Column sum = P{Y = j} 56
220

112
220

48
220

4
220
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Example

Example 2.
Suppose that 15 percent of the families in a certain community have no children, 20 percent
have 1 child, 35 percent have 2 children, and 30 percent have 3. Suppose further that in each
family each child is equally likely (independently) to be a boy or a girl. If a family is chosen at
random from this community, then B, the number of boys, and G , the number of girls, in this
family will have the joint probability mass function shown in Table 6.2.

i
j

0 1 2 3 Row sum = P{B = i}

0 .15 .10 .0875 .0375 .3750

1 .10 .175 .1125 0 .3875

2 .0875 .1125 0 0 .2000

3 .0375 0 0 0 .0375

Column sum = P{G = j} .3750 .3875 .2000 .0375
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Example (Contd...)

The probabilities shown in the Table above are obtained as follows:

P{B = 0,G = 0} = P{no children} = .15

P{B = 0,G = 1} = P{1 girl and total of 1 child}

= P{1 child}P{1 girl|1 child} = (.20)

(
1

2

)
P{B = 0,G = 2} = P{2 girls and total of 2 children}

= P{2 children}P{2 girls|2 children} = (.35)

(
1

2

)2

.
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Example (Contd...)

We say that X and Y are jointly continuous if there exists a function f (x , y), defined for all real
x and y , having the property that, for every set C of pairs of real numbers (that is, C is a set in
the two-dimensional plane),

P{(X ,Y ) ∈ C} =

∫∫
(x,y)∈C

f (x , y)dx dy . (3)

The function f (x , y) is called the joint probability density function of X and Y . If A and B are
any sets of real numbers, then, by defining C = {(x , y) : x ∈ A, y ∈ B}, we see from Equation
(3) that

P{X ∈ A,Y ∈ B} =

∫
B

∫
A
f (x , y)dx dy . (4)

Because

F (a, b) = P{X ∈ (−∞, a],Y ∈ (−∞, b]}

=

∫ b

−∞

∫ a

−∞
f (x , y)dx dy

it follows, upon differentiation, that

f (a, b) =
∂2

∂a∂b
F (a, b)

wherever the partial derivatives are defined. Another interpretation of the joint density function,
obtained from Equation (4), is
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Example (Contd...)

P{a < X < a + da, b < Y < b + db} =

∫ d+db

b

∫ a+da

a
f (x , y)dxdy

≈ f (a, b)dadb

when da and db are small and f (x , y) is continuous at a, b. Hence, f (a, b) is a measure of how
likely it is that the random vector (X ,Y ) will be near (a, b).
If X and Y are jointly continuous, they are individually continuous, and their probability density
functions can be obtained as follows:

P{X ∈ A} = P{X ∈ A,Y ∈ (−∞,∞)}

=

∫
A

∫ ∞
−∞

f (x , y)dydx

=

∫
A
fX (x)dx

where

fX (x) =

∫ ∞
−∞

f (x , y)dy

is thus the probability density function of X . Similarly, the probability density function of Y is
given by

fY (y) =

∫ ∞
−∞

f (x , y)dx .
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Example

Example 3.
The joint density function of X and Y is given by

f (x , y) =

{
2e−xe−2y 0 < x <∞, 0 < y <∞
0 otherwise

Compute (a) P{X > 1,Y < 1}, (b) P{X < Y }, and (c) P{X < a}.

Solution: (a)

P{X > 1,Y < 1} =

∫ 1

0

∫ ∞
1

2e−xe−2ydxdy

=

∫ 1

0
2e−2y (−e−x

∣∣∞
1

)dy

= e−1
∫ 1

0
2e−2ydy

= e−1(1− e−2).
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Solution (Contd...)

(b)

P{X < Y } =

∫∫
(x,y):x<y

2e−xe−2ydxdy

=

∫ ∞
0

∫ y

0
2e−xe−2ydxdy

=

∫ ∞
0

2e−2y (1− e−y )dy

=

∫ ∞
0

2e−2ydy −
∫ ∞

0
2e−3ydy

= 1−
2

3

=
1

3
.

(c)

P{X < a} =

∫ a

0

∫ ∞
0

2e−2y e−xdydx

=

∫ a

0
e−xdx

= 1− e−a.
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Example

Example 4.
Consider a circle of radius R, and suppose that a point within the circle is randomly chosen in
such a manner that all regions within the circle of equal area are equally likely to contain the
point. (In other words, the point is uniformly distributed within the circle.) If we let the center
of the circle denote the origin and define X and Y to be the coordinates of the point chosen
(Figure 6.1), then, since (X ,Y ) is equally likely to be near each point in the circle, it follows
that the joint density function of X and Y is given by

f (x , y) =

{
c if x2 + y2 ≤ R2

0 if x2 + y2 > R2

for some value of c.

(a) Determine c.

(b) Find the marginal density functions of X and Y .

(c) Compute the probability that D, the distance from the origin of the point selected, is less
than or equal to a.

(d) Find E [D].

Figure 6.1: Joint probability distribution.
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Solution

(a) Because ∫ ∞
−∞

∫ ∞
−∞

f (x , y)dydx = 1

it follows that

c

∫∫
x2+y2≤R2

dydx = 1.

We can evaluate
∫∫

x2+y2≤R2 dydx either by using polar coordinates
or, more simply, by noting that it represents the area of the circle and
is thus equal to πR2. Hence,

c =
1

πR2
.
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Solution (Contd...)

(b)

fX (x) =

∫ ∞
−∞

f (x , y)dy

=
1

πR2

∫
x2+y2≤R2

dy

=
1

πR2

∫ c

−c
dy , where c =

√
R2 − x2

=
2

πR2

√
R2 − x2 x2 ≤ R2

and it equals 0 when x2 > R2. By symmetry, the marginal density of Y is given by

fY (y) =
2

πR2

√
R2 − y2 y2 ≤ R2

= 0 y2 > R2.
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Solution (Contd...)

(c) The distribution function of D =
√
X 2 + Y 2, the distance from the origin, is obtained as

follows: For 0 ≤ a ≤ R,

FD(a) = P{
√

X 2 + Y 2 ≤ a}

= P{X 2 + Y 2 ≤ a2}

=

∫∫
x2+y2≤a2

f (x , y)dydx

=
1

πR2

∫∫
x2+y2≤a2

dydx

=
πa2

πR2

=
a2

R2

where we have used the fact that
∫∫

x2+y2≤a2 dydx is the area of a circle of radius a and

thus is equal to πa2.
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Solution (Contd...)

(d) From part (c), the density function of D is

fD(a) =
2a

R2
0 ≤ a ≤ R.

Hence,

E [D] =
2

R2

∫ R

0
a2da =

2R

3
.
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Joint Distribution Functions

Example 5.

The joint density of X and Y is given by

f (x , y) =

{
e−(x+y) 0 < x <∞, 0 < y <∞
0 otherwise

Find the density function of the random variable X/Y .
Solution. We start by computing the distribution function of X/Y . For
a > 0,

FX/Y (a) =

{
X

Y
≤ a

}

=

∫∫
x/y≤a

e−(+y)dx dy
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Example 1 Continued

=

∫ ∞
0

∫ ay

0
e−(x+y)dx dy

=

∫ ∞
0

(1− e−ay )e−ydy

=

{
−e−y +

e−(a+1)y

a + 1

}∣∣∣∣∣
∞

0

= 1− 1

a + 1

Differentiation shows that the density function of X/Y is given by
fX/Y (a) = 1/(a + 1)2, 0 < a <∞ .

We can also define joint probability distributions for n random variables in
exactly the same manner as we did for n = 2. For instance, the joint
cumulative probability distribution function F (a1, a2, · · · , an) of the n
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Example 1 Continued

random variables X1,X2, · · · ,Xn is defined by

F (a1, a2, · · · , an) = P{X1 ≤ a1,X2 ≤ a2, . . . ,Xn ≤ an}

Further, the n random variables are said to be jointly continuous if there
exists a function f (x1, x2, ..., xn), called the joint probability density
function, such that, for any set C in n-space,

P{(X1,X2, . . . ,Xn) ∈ C} =

∫∫
(x1,...,xn)∈C

· · ·
∫

f (x1, . . . , xn)dx1dx2 · · · dxn

In particular, for any n sets of real numbers A1,A2, . . . ,An,

P{X1 ∈ A1,X2 ∈ A2, . . . ,Xn ∈ An}

=

∫
An

∫
An−1

· · ·
∫
A1

f (x1, . . . , xn)dx1dx2 · · · dxn
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Example

Example 6.

The Multinomial distribution
One of the most important joint distributions is the multinomial
distribution, which arises when a sequence of n independent and identical
experiments is performed. Suppose that each experiment can result in any
one of r possible outcomes, with respective probabilities
p1, p2, . . . , pr ,

∑r
i=1 pi = 1. If we let Xi denote the number of the n

experiments that result in outcome number i , then

P{X1 = n1,X2 = n2, . . . ,Xr = nr} =
n!

n1!n2! · · · nr !
pn1

1 pn1
2 · · · p

nr
r (5)

whenever
∑r

i=1 ni = n.
Equation 5 is verified by noting that any sequence of outcomes for the n
experiments that leads to outcome i occurring ni times for i = 1, 2, . . . , r
will, by the assumed independence of experiments, have probability
pn1

1 pn2
2 · · · pnrr of occurring. Because there are n!/(n1!n2!...nr !) such
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Example 2 Continued

sequences of outcomes (there are n!/n1! . . . nr ! different permutations of n
things of which n1 are alike, n2 are alike,. . . , nr are alike), Equation 5 is
established. The joint distribution whose joint probability mass function is
specified by Equation 5 is called the multinomial distribution. Note that
when r = 2, the multinomial reduces to the binomial distribution.

Note also that any sum of a fixed set of theX i
s will have a binomial

distribution. That is, if N({1, 2, . . . , r}, then
∑

i∈N Xi will be a binomial
random variable with parameters n and p =

∑
i∈N pi . This follows because∑

i∈N Xi represents the number of the n experiments whose outcome is in
N, and each experiment will independently have such an outcome with
probability

∑
i∈N pi .

As an application of the multinomial distribution, suppose that a fair die is
rolled 9 times. The probability that 1 appears three times, 2 and 3 twice
each, 4 and 5 once each, and 6 not at all is
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The multinomial distribution

9!

3!2!2!1!1!0!

(
1

6

)3(1

6

)2(1

6

)2(1

6

)1(1

6

)1(1

2

)0

=
9!

3!2!2!

(
1

6

)9
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Independent Random Variables

The random variables X and Y are said to be independent if, for any two
sets of real numbers A and B,

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B} (6)

In other words, X and Y are independent if, for all A and B, the events
EA = {X ∈ A} and FB = {Y ∈ B} are independent.

It can be shown by using the three axioms of probability that Equation 6
will follow if and only if, for all a, b,

P{X ≤ a,Y ≤ b} = P{X ≤ a}P{Y ≤ b}

Hence, in terms of the joint distribution function F of X and Y ,X and Y
are independent if

F (a, b) = Fx(a)FY (b) for all a, b.
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Independent Random Variables

When X and Y are discrete random variables, the condition of
independence 6 is equivalent to

p(x , y) = pX (x)py(y) forall x , y (7)

The equivalence follows because, if Equation 6 is satisfied, then we obtain
Equation 7 by letting A and B be, respectively, the one-point sets A = {x}
and B = {y}. Furthermore, if Equation 7 is valid, then, for any sets A,B,

P{X ∈ A,Y ∈ B} =
∑
y∈B

∑
x∈A

p(x , y)

=
∑
y∈B

∑
x∈A

px(x)py(y)

=
∑
y∈B

pY (y)
∑
x∈A

px(x)

= P{Y ∈ B}P{x ∈ A}
and Equation 6 is established.

P. Sam Johnson Jointly Distributed Random Variables 25/78



Independent Random Variables

In the jointly continuous case, the condition of independence is equivalent
to

f (x , y) = fX (x)fY (y) for all x , y

Thus, loosely speaking, X and Y are independent if knowing the value of
one does not change the distribution of the other. Random variables that
are not independent are said to be dependent.
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Example

Example 7.

Suppose that n + m independent trials having a common probability of
success p are performed. If X is the number of successes in the first n
trials, and Y is the number of successes in the final m trials, then X and
Y are independent, since knowing the number of successes in the first n
trials does not affect the distribution of the number of successes in the
final m trials (by the assumption of independent trials). In fact, for
integral x and y ,

P{X = x ,Y = y} =

(
n
x

)
px(1− p)n−x

(
m
y

)
py (1− p)m−y

0 ≤ x ≤ n,

0 ≤ y ≤ m

= P{X = x}P{Y = y}

In contrast, X and Z will be dependent, where Z is the total number of
successes in the n + m trials. (Why?) .
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Example

Example 8.

Suppose that the number of people who enter a post office on a given day
is a Poisson random variable with parameter λ. Show that if each person
who enters the post office is a male with probability p and a female with
probability 1− p, then the number of males and females entering the post
office are independent Poisson random variables with respective
parameters λp and λ(1− p).
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Example

Example 9.

A man and a woman decide to meet at a certain location. If each of them
independently arrives at a time uniformly distributed between 12 noon and
1 P.M., find the probability that the first to arrive has to wait longer than
10 minutes.
Solution. If we let X and Y denote, respectively, the time past 12 that the
man and the woman arrive, then X and Y are independent random
variables, each of which is uniformly distributed over (0, 60). The desired
probability, P{X + 10 < Y }+ P{Y + 10 < X}, which, by symmetry,
equals 2P{X + 10 < Y }, is obtained as follows:

2P{X + 10 < Y } = 2

∫∫
x+10<y

f (x , y)dx dy
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Example 5 Continued

= 2

∫∫
x+10<y

fX (x)fY dx dy

= 2

∫ 60

10

∫ y−10

0

(
1

60

)2

dx dy

=
2

(60)2

∫ 60

10
(y − 10)dy

=
25

36

Our next example presents the oldest problem dealing with geometrical
probabilities. It was first considered and solved by Buffon, a French
naturalist of the 18th century, and is usually referred to as Buffon’s needle
problem.

P. Sam Johnson Jointly Distributed Random Variables 30/78



Example

Example 10.

Buffon’s needle problem
A table is ruled with equidistant parallel lines a distance D apart.A needle
of length L, where L ≤ D, is randomly thrown on the table. What is the
probability that the needle will intersect one of the lines (the other
possibility being that the needle will be completely contained in the strip
between two lines)?
Solution. Let us determine the position of the needle by specifying (1) the
distance X from the middle point of the needle to the nearest parallel line
and (2) the angle 0 between the needle and the projected line of length X .
(See Figure 6.2.) The needle will intersect a line if the hypotenuse of the
right triangle in Figure 6.2 is less than L/2 - that is, if

X

cos θ
<

L

2
or X <

L

2
cos θ

image
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Conditional Distributions: Continuous Case

If X and Y have a joint probability density function f (x , y), then the
conditional probability density function of X given that Y = y is defined,
for all values of y such that fY (y) > 0, by

fX |Y (x |y)dx =
f (x , y)

fY (y)

To motivate this definition, multiply the left-hand side by dx and the
right-hand side by (dx dy)/dy to obtain

fx |y (x |y)dx =
f (x , y)dx dy

fY (y)dy

≈ P{x ≤ X ≤ x + dx , y ≤ Y ≤ y + dy}
P{y ≤ Y ≤ y + dy}

= P{x ≤ X ≤ x + dx |y ≤ Y ≤ y + dy}
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Conditional Distributions: Continuous Case

In other words, for small values of dx and dy , fX |Y (x |y)dx represents the
conditional probability that X is between x and x + dx given that Y is
between y and y + dy .

The use of conditional densities allows us to define conditional
probabilities of events associated with one random variable when we are
given the value of a second random variable. That is, if X and Y are
jointly continuous, then, for any set A,

P{X ∈ A|Y = y} =

∫
A
fX |Y (x |y)dx

In particular, by letting A = (−∞, a], we can define the conditional
cumulative distribution function of X given that Y = y by
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Conditional Distributions: Continuous Case

fX |Y (a|y) ≡ P{X ≤ a|Y = y} =

∫ a

−∞
fX |Y (x |y)dx

The reader should note that, by using the ideas presented in the preceding
discussion, we have been able to give workable expressions for conditional
probabilities, even though the event on which we are conditioning (namely,
the event {Y = y}) has probability 0.
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Example

Example 11.

The joint density of X and Y is given by

f (x , y) =

{
12
5 x(2− x − y) 0 < x < 1, 0 < y < 1

0 otherwise

Compute the conditional density of X given that Y = y , where 0 < y < 1.
Solution. For 0 < x < 1, 0 < y < 1, we have

fX |Y (x |y) =
f (x , y)

fY (y)

=
f (x , y)∫∞

−∞ f (x , y)dx

=
x(2− x − y)∫ 1

0 x(2− x − y)dx
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Example 1 Continued

=
x(2− x − y)

2
3 − y/2

=
6x(2− x − y)

4− 3y
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Example

Example 12.

Suppose that the joint density of X and Y is given by

f (x , y) =

{
e−x/y e−y

y 0 < x <∞, 0 < y <∞
0 otherwise

Find P{X > 1|Y = y}.
Solution. We first obtain the conditional density of X given that Y = y .

fX |Y (x |y) =
f (x , y)

fY (y)

=
e−x/ye−y/y

e−y
∫∞

0 (1/y)e−x/ydx

=
1

y
e−x/y .
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Example 2 Continued

Hence,

P{X > 1|Y = y} =

∫ ∞
1

1

y
e−x/ydx

= −e−x/y
∣∣∣∞
1

= e−1/y .

If X and Y are independent continuous random variables, the conditional
density of X given that Y = y is just the unconditional density of X . This
is so because, in the independent case,

fX |Y (x |y) =
f (x , y)

fY (y)
=

fX (x)fY (y)

fY (y)
= fX (x)

We can also talk about conditional distributions when the random
variables are neither jointly continuous nor jointly discrete. For example,
suppose that X is a continuous random variable having probability density
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Example 2 Continued

function f and N is a discrete random variable, and consider the
conditional distribution of X given that N = n. Then

P{x < X < x + dx |N = n}
dx

=
P{N = n|x < X < x + dx}

P{N = n}
P{x < X < x + dx}

dx

and letting dx approach 0 gives

lim
dx→0

P{x < X , x + dx |N = n}
dx

=
P{N = n|X = x}

P{N = n}
f (x)

thus showing that the conditional density of X given that N = n is given
by

fX |N(x |n) =
P{N = n|X = x}

P{N = n}
f (x)
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Joint Probability Distribution of Functions of Random
Variables

Let X1 and X2 be jointly continuous random variables with joint
probability density function fX1,X2 . It is sometimes necessary to obtain the
joint distribution of the random variables Y1 and Y2, which arise as
functions of X1 and X2. Specifically, suppose that Y1 = g1(X1,X2) and
Y2 = g2(X1,X2) for some functions g1 and g2.

Assume that the functions g1 and g2 satisfy the following conditions:

1. The equations y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely
solved for x1 and x2 in terms of y1 and y2, with solutions given by,
say, x1 = h1(y1, y2), x2 = h2(y1, y2).

2. The functions g1 and g2 have continuous partial derivatives at all
points (x1, x2) and are such that the 2× 2 determinant
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Joint Probability Distribution of Functions of Random
Variables

J(x1, x2) =

∣∣∣∣∣∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ =
∂g1

∂x1

∂g2

∂x2
− ∂g1

∂x2

∂g2

∂x1
6= 0

at all points (x1, x2).

Under these two conditions, it can be shown that the random variables Y1

and Y2 are jointly continuous with joint density function given by

fY1Y2(y1, y2) = fX1,X2(x1, x2)|J(x1, x2)|−1 (8)

where x1 = h1(y1, y2), x2 = h2(y1, y2).

A proof of Equation 8 would proceed along the following lines:
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Joint Probability Distribution of Functions of Random
Variables

P{Y1 ≤ y1,Y2 ≤ y2} =

∫∫
(x1,x2):

g1(x1,x2)≤y1

g2(x1,x2)≤y2

fX1,X2(x1, x2)dx1dx2 (9)

The joint density function can now be obtained by differentiating Equation
9 with respect to y1 and y2. That the result of this differentiation will be
equal to the righthand side of Equation 8 is an exercise in advanced
calculus whose proof will not be presented in this book.
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Example

Example 13.

Let X1 and X2 be jointly continuous random variables with probability
density function fX1,X2 . Let Y1 = X1 + X2,Y2 = X1 − X2. Find the joint
density function of Y1 and Y2 in terms of fX1,X2 .

Solution. Let g1(x1, x2) = x1 + x2 and g2(x1, x2) = x1 − x2. Then

J(x1, x2) =

∣∣∣∣1 1
1 −1

∣∣∣∣ = −2

Also, since the equations y1 = x1 + x2 and y2 = x1 − x2 have
x1 = (y1 + y2)/2, x2 = (y1 − y2)/2 as their solution, it follows from
Equation 8 that the desired density is

fY1,Y2(y1, y2) =
1

2
fX1,X2

(
y1 + y2

2
,
y1 − y2

2

)
.
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Example 3 Continued

For instance, if X1 and X2 are independent uniform (0, 1) random
variables, then

fY1,Y2 =

{
1
2 0 ≤ y1 + y2 ≤ 2, 0 ≤ y1 − y2 ≤ 2

0 otherwise

or if X1 and X2 are independent exponential random variables with
respective parameters λ1 and λ2, then

fY1,Y2(y1, y2)

=

{
λ1λ2

2 exp
{
−λ1

( y1+y2
2

)
− λ2

( y1−y2
2

)}
y1 + y2 ≥ 0, y1 − y2 ≥ 0

0 otherwise

image

Figure 6.4 : · = Random point.(x , y) = (R,Θ).
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Example 3 Continued

Finally, if X1 and X2 are independent standard normal random variables,
then

fY1,Y2(y1, y2) =
1

4π
e−[(y1+y2)2/8+(y1−y2)2/8]

=
1

4π
e−(y2

1 +y2
2 )/4

=
1√
4π

e−y
2
1 /4 1√

4π
e−y

2
2 /4.

Thus, not only do we obtain (in agreement with Proposition 3.2) that
both X1 + X2 and X1 − X2 are normal with mean 0 and variance 2, but we
also conclude that these two random variables are independent. (In fact, it
can be shown that if X1 and X2 are independent random variables having
a common distribution function F , then X1 + X2 will be independent of
X1 − X2 if and only if F is a normal distribution function.)
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Example

Example 14.

Let X1,X2, and X3 be independent standard normal random variables. If
Y1 = X1 + X2 + X3,Y2 = X1 − X2, and Y3 = X1 − X3, compute the joint
density function of Y1,Y2,Y3.
Solution. Letting Y1 = X1 + X2 + X3,Y2 = X1 − X2,Y3 = X1 − X3, the
Jacobian of these transformations is given by

J =

∣∣∣∣∣∣
1 1 1
1 −1 0
1 0 −1

∣∣∣∣∣∣ = 3

As the preceding transformations yield that

X1 =
Y1 + Y2 + Y3

3
X2 =

Y1 − 2Y2 + Y3

3
X3 =

Y1 + Y2 − 2Y3

3

we see from Equation (7.3) that
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Example 4 Continued

fY1,Y2,Y3(y1, y2, y3)

=
1

3
fX1,X2,X3

(
y1 + y2 + y3

3
,
y1 − 2y2 + y3

3
,
y1 + y2 − 2y3

3

)
Hence, as

fX1,X2,X3(x1, x2, x3) =
1

(2π)3/2
e−

∑3
i=1 x

2
i /2

we see that

fY1,Y2,Y3(y1, y2, y3) =
1

3(2π)3/2
e−Q(y1,y2,y3)/2

where Q(y1, y2, y3)

=

(
y1 + y2 + y3

3

)2

+

(
y1 − 2y2 + y3

3

)2

+

(
y1 + y2 − 2y3

3

)2
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Example 4 Continued

=
y2

1

3
+

2

3
y2

2 +
2

3
y2

3 −
2

3
y2y3
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Example

Example 15.

Let X1,X2, . . . ,Xn be independent and identically distributed exponential
random variables with rate λ. Let

Yi = X1 + · · ·+ Xi i = 1, . . . , n.

(a) Find the joint density function of Y1, . . . ,Yn.

(b) Use the result of part (a) to find the density of Yn.

Solution(a) The Jacobian of the transformations
Y1 = X1,Y2 = X1 + X2, . . . ,Yn = X1 + · · ·+ Xn is
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Example 5 Continued

J =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0
· · · · · ·
· · · · · ·
1 1 1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣
Since only the first term of the determinant will be nonzero, we have
J = 1. Now, the joint density function of X1, . . . ,Xn is given by

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

λe−λxi 0 < xi <∞, i = 1, . . . , n

Hence, because the preceding transformations yield

X1 = Y1,X2 = Y2 − Y1, . . . ,Xi = Yi − Yi−1, . . . ,Xn = Yn − Yn−1
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Example 5 Continued

it follows from Equation (7.3) that the joint density function of Y1, . . . ,Yn

is fY1,...,Yn(y1, y2, . . . , yn − yn)

=fX1,...,Xn(y1, y2 − y1, . . . , yi − yi−1, . . . , yn − yn−1)

=λn exp

{
−λ

[
y1 +

n∑
i=2

(yi − yi−1)

]}
=λne−λyn 0 < y1, 0 < yi − yi−1, i = 2, . . . , n

=λne−λyn 0 < y1 < y2 < · · · < yn.

(b) To obtain the marginal density of Yn, let us integrate out the other
variables one at a time. Doing this gives

fy2,...,Yn(y2, . . . , yn) =

∫ y2

0
λne−λyndy1

= λny2e
−λyn 0 < y2 < y3 < · · · < yn.

P. Sam Johnson Jointly Distributed Random Variables 51/78



Example 5 Continued

Continuing, we obtain

fy3,...,Yn(Y3, . . . , yn) =

∫ y3

0
λny2e

−λyndy2

= λn
y2

3

2
e−λyn 0 < y3 < y4 < · · · < yn.

The next integration yields

fY4,...,Yn(y4, . . . , yn) = λn
y3

4

3!
e−λyn 0 < y4 < · · · < yn.

Continuing in this fashion gives

fYn(yn) = λn
yn−1
n

(n − 1)!
e−λyn 0 < yn.
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Example 5 Continued

which, in agreement with the result obtained in Example 3b, shows that
X1 + · · ·+ Xn is a gamma random variable with parameters n and λ

P. Sam Johnson Jointly Distributed Random Variables 53/78



Exercise

Exercise 16.

Suppose that 3 balls are chosen without replacement from an urn
consisting of 5 white and 8 red balls. Let Xi equal 1 if the ith ball selected
is white, and let it equal 0 otherwise. Give the joint probability mass
function of

(a) X1,X2;

(b) X1,X2,X3.

Solution: (a)

p(0, 0) =
8.7

13.12
= 14/39

p(0, 1) =p(1, 0) =
8.5

13.12
= 10/39

p(1, 1) =
5.4

13.12
= 5/39
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Exercise 6 Solution Continued

(b)

p(0, 0, 0) =
8.7.6

13.12.11
= 28/143

p(0, 0, 1) =p(0, 1, 0) = p(1, 0, 0) =
8.7.5

13.12.11
= 70/429

p(0, 1, 1) =p(1, 0, 1) = p(1, 1, 0) =
8.5.4

13.12.11
= 40/429

p(1, 1, 1) =
5.4.3

13.12.11
= 5/143
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Exercise

Exercise 17.

Repeat Problem 2 when the ball selected is replaced in the urn before the
next selection.
Solution:

(a) p(0, 0) = (8/13)2, p(0, 1) = p(1, 0) = (5/13)(8/13), p(1, 1) =
(5/13)2

(b)

p(0, 0, 0) = (8/13)3

p(i , j , k) = (8/13)2(5/13)if i + j + k = 1

p(i , j , k) = (8/13)(5/13)2if i + j + k = 2
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Exercise

Exercise 18.

The joint probability density function of X and Y is given by
f (x , y) = c(y2 − x2)e−y − y ≤ x ≤ y , 0 < y <∞
(a) Find C .

(b) Find the marginal densitites of X and Y .

(c) Find E [X ]

Solution:

fY (y) = c

∫ y

−y
(y2 − x2)e−ydx

=
4

3
ey3e−y ,−0 < y <∞

∞∫
0

fY (y)dy = 1⇒ c = 1/8and so fY (y) =
y3e−y

6
, 0 < y <∞
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Exercise 8 solution continued

fX (x) =
1

8

∞∫
|x |

(y2 − x2)e−ydy

=
1

4
e−|x |(1 + |x |)upon using−

∫
y2e−y = y2e−y + 2ye−y + 2e−y
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Exercise

Exercise 19.

The joint probability density function of X and Y is given by

f (x , y) =
6

7

(
x2 +

xy

2

)
0 < x < 1, 0 < y < 2

(a) Verify that this is indeed a joint density function.

(b) Compute the density function of X .

(c) Find P{X > Y }.
(d) Find P{Y > 1

2 |X < 1
2}.

(e) Find E [X ].

(f) Find E [Y ].
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Exercise 9 solution

Solution:

(b) fX (x) = 6
7

∫ 2
0

(
x2 + xy

2

)
dy = 6

7 (2x2 + x)

(c) P{X > Y } = 6
7

∫ 1
0

∫ x
0

(
x2 + xy

2 dydx
)

= 15
56

(d) P{y > 1/2|X < 1/2} = P{Y > 1/2,X < 1/2}/P{X < 1/2}

=

∫ 2
1/2

∫ 1/2
0

(
x2 + xy

2 dxdy
)

∫ 1/2
0 (2x2 + x)dx
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Exercise

Exercise 20.

An ambulance travels back and forth at a constant speed along a road of
length L. At a certain moment of time, an accident occurs at a point
uniformly distributed on the road. [That is, the distance of the point from
one of the fixed ends of the road is uniformly distributed over (0, L).]
Assuming that the ambulance’s location at the moment of the accident is
also uniformly distributed, and assuming independence of the variables,
compute the distribution of the distance of the ambulance from the
accident.
Solution :
Let X and Y denoted respectively the locations of the ambulance and the
accident of the moment the accident occurs.

P{|Y − X | < a} =P{Y < X < Y + a}+ P{X < Y < X + a}
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Exercise 10 Solution Continued

=
2

L2

Lmin(y+a,L)∫
0

∫
y
dxdy

=
2

L2

 L−a∫
0

y+a∫
y

dxdy +

L∫
L−a

L∫
y

dxdy


= 1− L− a

L
+

a

L2
(L− a) =

a

L

(
2− a

L

)
, 0 < a < L
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Exercise

Exercise 21.

The random vector (X ,Y ) is said to be uniformly distributed over a region
R in the plane if, for some constant c , its joint density is

f (x , y) =

{
c if (x , y) ∈ R

0 otherwise

(a) Show that 1/c = area of region R. Suppose that (X ,Y ) is uniformly
distributed over the square centered at (0, 0) and with sides of length
2.

(b) Show that X and Y are independent, with each being distributed
uniformly over (−1, 1).

(c) What is the probability that (X ,Y ) lies in the circle of radius 1
centered at the origin? That is, find P{X 2 + Y 2 ≤ 1}.
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Exercise 11 Solution

Solution:

(a) 1 =
∫∫

f (x , y)dydx =
∫∫

(x ,y)∈R
cdydx = cA(R)

where A(R) is the area of the region R.

(b)

f (x , y) = 1/4,−1 ≤ x , y ≤ 1

= f (x)f (y)

wheref (v) = 1/2,−1 ≤ v ≤ 1.

(c) P{X 2 + Y 2 ≤ 1} = 1
4

∫∫
c

dydx = (area of circle)/4 = π/4
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Exercise

Exercise 22.

Suppose that n points are independently chosen at random on the
circumference of a circle, and we want the probability that they all lie in
some semicircle. That is, we want the probability that there is a line
passing through the center of the circle such that all the points are on one
side of that line, as shown in the following diagram:

image

Let P1, . . . ,Pn denote the n points. Let A denote the event that all the
points are contained in some semicircle, and let Ai be the event that all
the points lie in the semicircle beginning at the point Pi and going
clockwise for 180◦, i = 1, . . . , n.

(a) Express A in terms of the Ai .

(b) Are the Ai mutually exclusive?

(c) Find P(A).
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Exercise 12 solution

Solution

(a) A = ∪Ai ,

(b) yes

(c) P(A) =
∑

P(Ai ) = n(1/2)n−1
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Exercise

Exercise 23.

Two points are selected randomly on a line of length L so as to be on
opposite sides of the midpoint of the line. [In other words, the two points
X and Y are independent random variables such that X is uniformly
distributed over (0, L/2) and Y is uniformly distributed over (L/2, L).]
Find the probability that the distance between the two points is greater
than L/3.
Solution:

P{Y − X > L/3} =

∫∫
y−x>L/3

4

L2
dydx

L

2
< y < L

0 < x <
L

2
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Exercise 13 solution continued

=
4

L2

 L/6∫
0

L∫
L/2

dydx +

L/2∫
L/6

L∫
x+L/3

dydx


=

4

L2

[
L2

12
+

5L2

24
− 7L2

72

]
= 7/9
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Exercise

Exercise 24.

Let f (x , y) = 24xy 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ x + y ≤ 1 and let it equal
0 otherwise.

1. Show that f (x , y) is a joint probability density function.

2. Find E [X ].

3. Find E [Y ].

Solution:

(a) We must show that
∫∞
−∞

∫∞
−∞ f (x , y)dxdy = 1. Now,∫ ∞

−∞

∫ ∞
−∞

f (x , y)dxdy =

∫ 1

0

∫ 1−y

0
24xy dxdy

=

∫ 1

0
12y(1− y)2dy
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Exercise 14 solution continued

=

∫ 1

0
12(y − 2y2 + y3)dy

= 12(1/2− 2/3 + 1/4) = 1.

(b)

E [X ] =

∫ 1

0
xfX (x)dx

=

∫ 1

0
x

∫ 1−x

0
24dydx

=

∫ 1

0
12x2(1− x)2dx = 2/5

(c) 2/5
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Exercise

Exercise 25.

The random variables X and Y have joint density function

f (x , y) = 12xy(1− x) 0 < x < 1, 0 < y < 1

and equal to 0 otherwise.

(a) Are X and Y independent?

(b) Find E [X ].

(c) Find E [Y ].

(d) Find Var(X ).

(e) Find Var(Y ).
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Exercise 15 Soltuion

Solution:

(a) yes

fX (x) = 12x(1− x)

∫ 1

0
ydy = 6x(1− x), 0 < x < 1

fY (y) = 12y

∫ 1

0
x(1− x)dx = 2y , 0 < y < 1

(b) E [X ] =
∫ 1

0 6x2(1− x)dx = 1/2

(c) E [Y ] =
∫ 1

0 2y2dy = 2/3

(d) Var(X ) =
∫ 1

0 6x3(1− x)dx − 1/4 = 1/20

(e) Var(Y ) =
∫ 1

0 2y3dy − 4/9 = 1/18
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Exercise

Exercise 26.

The expected number of typographical errors on a page of a certain
magazine is .2. What is the probability that an article of 10 pages contains
(a)0 and (b)2 or more typographical errors? Explain your reasoning!
Solution :

(a) e−2

(b) 1− e−2 − 2e−2 = 1− 3e−2

The number of typographical errors on each page should
approximately be Poisson distributed and the sum of independent
Poisson random variables is also a Poisson random variable.
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Exercise

Exercise 27.

The joint density of X and Y is

f (x , y) = c(x2 − y2)e−x , 0 ≤ x <∞,−x ≤ y ≤ x .

Find the conditional distribution of Y , given X = x .
Solution:

fY |X (y |x) =
(x2 − y2)e−x∫ x

−x(x2 − y2)e−xdx

=
3

4x3
(x2 − y2),−x < y < x

FY |X (y |x) =
3

4x3

∫ y

−x
(x2 − y2)dy

=
3

4x3
(x2y − y3/3 + 2x3/3),−x < y < x
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Exercise

Exercise 28.

If 3 trucks break down at points randomly distributed on a road of length
L, find the probability that no 2 of the trucks are within a distance d of
each other when d ≤ L/2.
Solution: (

L− 2d

L

)3
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Exercise

Exercise 29.

If X and Y are independent random variables both uniformly distributed
over (0, 1), find the joint density function of
R =

√
x2 + Y 2,Θ = tan−1 Y /X .

Solution :

fR,θ(r , θ), 0 < r sin θ < 1, 0 < r cos θ < 1, 0 < θ < π/2, 0 < r <
√

2
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Exercise

Exercise 30.

Suppose that Xi , i = 1, 2, 3 are independent Poisson random variables with
respective means Xi , i = 1, 2, 3. Let X = X1 + X2 and Y = X2 + X3. The
random vector X ,Y is said to have a bivariate Poisson distribution. Find
its joint probability mass function. That is, find P{X = n,Y = m}.
Solution:

P(X = n,Y = m) =
∑
i

P(X = n,Y = m|X2 = i)P(X2 = i)

= e−(λ1+λ2+λ3)

min(n,m)∑
i=0

λn−i1

(n − 1)

λm−i

(m − i)!

λi2
i !
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